skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aaron Lamb"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper describes a novel framework for executing a network of trained deep neural network (DNN) models on commercial-off-the-shelf devices that are deployed in an IoT environment. The scenario consists of two devices connected by a wireless network: a user-end device (U), which is a low-end, energy and performance-limited processor, and a cloudlet (C), which is a substantially higher performance and energy-unconstrained processor. The goal is to distribute the computation of the DNN models between U and C to minimize the energy consumption of U while taking into account the variability in the wireless channel delay and the performance overhead of executing models in parallel. The proposed framework was implemented using an NVIDIA Jetson Nano for U and a Dell workstation with Titan Xp GPU as C. Experiments demonstrate significant improvements both in terms of energy consumption of U and processing delay. 
    more » « less